Let $S_n = 4\sum\limits_{k=1}^{2n} (-1)^k \sqrt{k} - \sqrt{2n}-\sqrt{2n+1}$ be the finite sum at hand. We are going to show
- $S_\infty \stackrel{def}{=} \lim_{n\to\infty} S_n$ exists.
- $S_\infty = 4(\sqrt{8}-1)\zeta(-\frac12) \approx -1.520419250438736...$
Unlike its exact value, the existence of $S_\infty$ can be justified using elementary methods.
Let $a_k$ be the coefficient of $\sqrt{k}$ in above expression of $S_n$. Notice
$$\begin{align}\sum_{k=1}^{2n+1} a_k t^k
&= 4\sum_{k=1}^{2n}(-1)^k t^k - t^{2n}(1+t)
= -4t\frac{1-t^{2n}}{1+t} + (1-t^{2n})(1+t) -(1+t)\\
&= -1-t + ((1+t)^2 - 4t)\frac{1-t^{2n}}{1+t}
= -1-t + (1-2t+t^2)\sum_{k=1}^{2n}(-1)^{k-1} t^{k-1}\end{align}$$
We can rewrite $S_n$ to have the form of an alternating sum:
$$S_n = -1 + \sum_{k=1}^{2n} (-1)^{k}b_k\quad\text{ where }\quad b_k = 2\sqrt{k} - \sqrt{k-1} - \sqrt{k+1}$$
Notice as $k$ increases,
$$\begin{align}b_k
&= (\sqrt{k}-\sqrt{k-1}) - (\sqrt{k+1}-\sqrt{k})\\
&= \frac{1}{\sqrt{k}+\sqrt{k-1}} - \frac{1}{\sqrt{k+1}+\sqrt{k}}
= \frac{\sqrt{k+1}-\sqrt{k-1}}{(\sqrt{k}+\sqrt{k-1})(\sqrt{k+1}+\sqrt{k})}\\
&= \frac{2}{(\sqrt{k+1}+\sqrt{k-1})(\sqrt{k}+\sqrt{k-1})(\sqrt{k+1}+\sqrt{k})}
\end{align}
$$
monotonically decreases to zero. By alternating series test, $-1 + \sum\limits_{k=1}^\infty (-1)^k b_k$ is a converging series.
Since $S_n$ is a sub-sequence of its partial sums, $S_n$ converges.
To evaluate $S_\infty$, let $T_n = \sum\limits_{k=1}^{2n}(-1)^k\sqrt{k}$. We have
$S_n = 4T_n - \sqrt{2n} - \sqrt{2n+1}$ and
$$T_n = \left(\sum_{k=1,\text{even}}^{2n} - \sum_{k=1,\text{odd}}^{2n}\right)\sqrt{k} = \left(2\sum_{k=1,\text{even}}^{2n} - \sum_{k=1}^{2n}\right)\sqrt{k}
= \sqrt{8}\sum_{k=1}^n \sqrt{k} - \sum_{k=1}^{2n}\sqrt{k}
$$
It is known that the sum over $\sqrt{k}$ has following asymptotic expansion (e.g. see this answer)
$$\sum_{k=1}^n k^{1/2} \asymp \frac23 n^{3/2} + \frac12 n^{1/2} + K + \frac{1}{24}n^{-1/2} + \cdots\quad\text{ where } K = \zeta\left(-\frac12\right)$$
Substitute this expansion into expression of $T_n$, we find
$$\begin{align}
S_n
&= 4\sqrt{8}\left(\frac23 n^{3/2} + \frac12 n^{1/2} + K\right)
- 4\left(\frac23 (2n)^{3/2} + \frac12 (2n)^{1/2} + K\right)
- 2\sqrt{2n} + O(n^{-1/2})\\
&= 4(\sqrt{8}-1)K + O(n^{-1/2})
\end{align}
$$
As a result,
$S_\infty = \lim\limits_{n\to\infty} S_n = 4(\sqrt{8}-1)\zeta\left(-\frac12\right) \approx
-1.520419250438736...$