I am interested in the elements of the Galois group of $\mathbb Q(\sqrt{2+\sqrt{2}})/\mathbb Q$.
Let $\alpha:=\sqrt{2+\sqrt{2}}$, then the minimal polynomial $m_{\alpha,\mathbb Q}(X)=X^4-4X^2+2$ has roots $$\pm\sqrt{2+\sqrt{2}}=\pm\alpha\\\pm\sqrt{2-\sqrt{2}}=\pm\beta$$ where $\beta=\frac{\alpha^2-2}{\alpha}\in\mathbb Q(\alpha)$ so the field extension is normal and we can extend the identity $id:\mathbb Q\to\mathbb Q$ to an automorphism $\phi:\mathbb Q(\alpha)\to\mathbb Q(\alpha)$ by permuting the $4$ roots:$$\phi_\alpha=\begin{cases}\alpha\mapsto\alpha\\\beta\mapsto\beta\end{cases}\\\phi_\beta=\begin{cases}\alpha\mapsto\beta\\\beta\mapsto-\alpha\end{cases}\\\phi_{-\alpha}=\begin{cases}\alpha\mapsto-\alpha\\\beta\mapsto-\beta\end{cases}\\ \phi_{-\beta}=\begin{cases}\alpha\mapsto-\beta\\\beta\mapsto\alpha\end{cases} $$ as the images of $\beta$ are determined by the images of $\alpha$ already. In total we have that $\phi_\alpha$ acts as the identity on $\mathbb Q(\alpha)$ and $$\text{Gal}(\mathbb Q(\sqrt{2+\sqrt{2}})/\mathbb Q)=\langle\phi_\beta\rangle=\langle\phi_{-\beta}\rangle\cong\mathbb Z_4$$.