Compute the limit $$ \lim_{n \to \infty} \frac{\sqrt[n]{(n+1)(n+2)\cdots(2n)}}n $$
How can this be done? The best I could do was rewrite the limit as $$ \lim_{n \to \infty} \left(\frac{n+1}n \right)^{\frac 1n}\left(\frac{n+2}n \right)^{\frac 1n}\cdots\left(\frac{2n}n \right)^{\frac 1n} $$
Following that log suggestion in the comments below: \begin{align} &\ln \left(\lim_{n \to \infty} \left(\frac{n+1}n \right)^{\frac 1n}\left(\frac{n+2}n \right)^{\frac 1n}\cdots\left(\frac{2n}n \right)^{\frac 1n} \right) \\ &= \lim_{n \to \infty} \ln \left( \left(\frac{n+1}n \right)^{\frac 1n}\left(\frac{n+2}n \right)^{\frac 1n}\cdots\left(\frac{2n}n \right)^{\frac 1n} \right) \\ &= \lim_{n \to \infty} \left(\ln \left(\frac{n+1}n \right)^{\frac 1n} + \ln\left(\frac{n+2}n \right)^{\frac 1n} + \cdots + \ln\left(\frac{n+n}n \right)^{\frac 1n} \right) \\ &= \lim_{n \to \infty} \sum_{i=1}^n \ln \left(\frac{n+i}n \right)^{\frac 1n} \\ &= \lim_{n \to \infty} \frac 1n \sum_{i=1}^n \ln \left(1 + \frac in \right) \\ &= \int_1^2 \ln x \, dx \\ &= (x \ln x - x)\vert_1^2 \\ &= (2 \ln 2 - 2)-(1 \ln 1-1) \\ &= (\ln 4-2)-(0-1) \\ &= \ln 4-1 \\ &= \ln 4 - \ln e \\ &= \ln \left( \frac 4e \right) \end{align}
but I read from somewhere that the answer should be $\frac 4e$.