Let $a_0=1$ and $a_{n} = \sin(a_{n-1})$. Does the following series $$ \sum\limits_{n=0}^{\infty}a_n $$ converges?
I have no ideas...
Let $a_0=1$ and $a_{n} = \sin(a_{n-1})$. Does the following series $$ \sum\limits_{n=0}^{\infty}a_n $$ converges?
I have no ideas...
$a_n \geq\frac{1}{n} (n \geq2)$, because
if $a_{n-1} \geq \frac{1}{n-1},$ then $ a_n = \sin(a_{n-1}) \geq \sin(\frac{1}{n-1}) \geq \frac{1}{n}$
reason of $\sin(\frac{1}{n-1} ) \geq \frac{1}{n} (n\geq2)$ (graph)
so $\sum a_n \geq \sum \frac{1}{n}=\infty$