$C(I_n)$ is the space of continuous functions on $I_n=[0,1]^n$ with the metric $d(f,g)=\sup\{|f(x)-g(x)\mid x\in I_d\}$ where $f,g\in C(I_n)$. M is a linear subspace of $C(I_n)$.
If $f_0\in C(I_n)\setminus \operatorname{cl}(M)$, then there is a $\delta>0$ for which $\sup|f(x)-f_0(x)|>\delta\enspace\forall f \in M$
My question is, if the closure of $M$, $\operatorname{cl}(M)$, is a closed proper subset of $C(I_n)$, does this imply that $\sup|f(x)-f_0(x)|>\delta\enspace\forall f \in \operatorname{cl}(M)$ also?