What is $$\lim_{n\to\infty} \frac{n^k}{a^n},$$ where $a \in \mathbb{Q}, a>1,k\in\mathbb{N}$.
Asked
Active
Viewed 122 times
-2
-
if dv, please explain. – mxdxzxyjzx May 13 '18 at 04:38
-
Possible duplicate of How to prove that exponential grows faster than polynomial? – Hans Lundmark May 13 '18 at 07:55
1 Answers
3
We know $\sum\limits_{n = 1}^{ + \infty } {\frac{{{n^k}}}{{{a^n}}}} < + \infty $ by ratio test. So we have $$\mathop {\lim }\limits_{n \to + \infty } \frac{{{n^k}}}{{{a^n}}} = 0.$$

Trần Quang Minh
- 431