$\newcommand{\v}{\operatorname{var}}\newcommand{\c}{\operatorname{cov}}\newcommand{\e}{\operatorname{E}}$One way is this: Find
\begin{align}
& \e \big( (X_i-\overline X\,)^2\big) =\v(X_i-\overline X\,) = \v(X_i) + \v(\overline X\,) - 2\c(X_i,\overline X\,) \\[10pt]
= {} & \sigma^2 + \frac{\sigma^2} n - 2\frac{\sigma^2} n
\end{align}
and then add those up.
PS: It is pointed out that $\e S$ rather than $\e(S^2)$ was required. That's more involved. How to show that
$$
Y = (n-1) \frac{S^2}{\sigma^2} \sim \chi^2_{n-1}
$$
is a question that I think has been dealt with in these pages. So we have
$$
f_Y(y) = \frac 1 {\Gamma(n/2)} \left( \frac y 2 \right)^{(n/2)-1} e^{-y/2} \, \frac{dy} 2 \quad\text{for } y\ge0.
$$
And then
\begin{align}
\e S & = \frac \sigma {\sqrt{n-1}} \int_0^\infty \sqrt y \, f_Y(y)\, dy \\[10pt]
& = \frac {\sigma\sqrt 2}{\sqrt{n-1}} \cdot \frac 1 {\Gamma(n/2)} \int_0^\infty \sqrt{\frac y 2} \left( \frac y 2 \right)^{(n/2)-1} e^{-y/2} \, \frac{dy} 2 \\[10pt]
& = \frac {\sigma\sqrt 2}{\sqrt{n-1}} \cdot \frac 1 {\Gamma(n/2)} \int_0^\infty u^{((n+1)/2)-1} e^{-u} \, du \\[10pt]
& = \frac {\sigma\sqrt 2}{\sqrt{n-1}} \cdot \frac 1 {\Gamma(n/2)} \cdot \Gamma\left( \frac{n+1} 2 \right)
\end{align}
Now iteratively apply the identity $\Gamma(\alpha+1) = \alpha \Gamma(\alpha)$ and remember that $\Gamma(1/2) = \sqrt \pi.$