Let us write the matrix-vector product ${\bf M}\cdot {\bf c}$ in index notation (Einstein convention). Using the product rule, the gradient of $({\bf M}\cdot {\bf c})_{i} = M_{ij} c_j$ satisfies
$$
\left(\nabla({\bf M}\cdot {\bf c})\right)_{ik} = M_{ij,k} c_j + M_{ij} c_{j,k} = ({\bf c}\cdot\nabla({\bf M}^\top) + {\bf M}\cdot \nabla {\bf c})_{ik} \, .
$$
Similarly, one shows that the vector-matrix product $({\bf c}\cdot {\bf M})_{j} = c_i M_{ij}$ satisfies
$$
\left(\nabla({\bf c}\cdot{\bf M})\right)_{jk} = c_{i,k} M_{ij} + c_i M_{ij,k} = ({\bf M^\top}\!\cdot\nabla {\bf c} + {\bf c}\cdot \nabla{\bf M})_{jk} \, ,
$$
Therefore,
\begin{aligned}
\nabla({\bf M}\cdot {\bf c}) &= {\bf c}\cdot\nabla({\bf M}^\top) + {\bf M}\cdot \nabla {\bf c} \\
\nabla({\bf c}\cdot {\bf M}) &= {\bf M^\top}\!\cdot\nabla {\bf c} + {\bf c}\cdot \nabla{\bf M}
\end{aligned}