Exercise :
For the problem : $$\begin{cases} zz_x + z_y = 0 \\ z(x,0) = x^2\end{cases}$$ derive the solution : $$z(x,y) = \begin{cases} x^2, \quad y = 0\\ \frac{1+2xy - \sqrt{1+4xy}}{2y^2}, \quad y \neq 0 \; \text{and} \; 1+4xy >0 \end{cases}$$ When do shocks develop ? Use the Taylor series for $\sqrt{1+\epsilon}$ about $\epsilon= 0$ to verify that $\lim_{y\to 0} z(x,y) = x^2$.
Attempt :
$$\frac{\mathrm{d}x}{z} = \frac{\mathrm{d}y}{1} = \frac{\mathrm{d}z}{0}$$
We yield the integral curves :
$$\frac{\mathrm{d}y}{1} = \frac{\mathrm{d}z}{0} \implies z_1 = z $$
$$\frac{\mathrm{d}x}{z} = \frac{\mathrm{d}y}{1} \implies z_2 = x -zy$$
Thus, the general solution will involve a $F \in C^1$ function, such that :
$$z(x,y) = F(x-zy)$$
For $y=0$ :
$$z(x,0) = F(x) \Rightarrow F(x) = x^2$$
How would one proceed now to find the second branch of the solution ?
(The shock-taylor part is easy)