We can evaluate the Laplace Transform of $\frac{e^{at}-\cos(bt)}{t}$ directly without appealing to Feynman's Trick of differentiating under the integral.
METHODOLOGY $1$: GENERALIZED FRULANNI INTEGRAL
Note that we have
$$\begin{align}
\int_0^\infty \frac{e^{at}-\cos(bt)}{t}\,e^{-st}\,dt&=\frac12\int_0^\infty \frac{e^{at}-e^{ibt}}{t}\,e^{-st}\,dt+\frac12\int_0^\infty \frac{e^{at}-e^{-ibt}}{t}\,e^{-st}\,dt\\\\
&=\frac12\int_0^\infty \frac{e^{-(s-a)t}-e^{-(s-ib)t}}{t}\,dt+\frac12\int_0^\infty \frac{e^{-(s-a)t}-e^{-(s+ib)t}}{t}\,dt\tag1
\end{align}$$
Applying the Generalized Frullani Integral (GFI), which I developed HERE, reveals
$$\begin{align}
\int_0^\infty \frac{e^{at}-\cos(bt)}{t}\,e^{-st}\,dt&=\text{Re}\left(\log\left(\left|\frac{s-ib}{s-a}\right|\right)+i\arctan\left(b/(s-a)\right)\right)\\\\
&=\frac12\log\left(\frac{s^2+b^2}{(s-a)^2}\right)
\end{align}$$
METHODOLOGY $2$: GENERALIZED FRULANNI INTEGRAL
Note that we have
$$\begin{align}
\int_0^\infty \frac{e^{at}-\cos(bt)}{t}\,e^{-st}\,dt&=\int_0^\infty \frac{e^{at}-1}{t}\,e^{-st}\,dt+\int_0^\infty \frac{1-\cos(bt)}{t}\,e^{-st}\,dt\\\\
&=\int_0^\infty \frac{e^{-(s-a)t}-e^{-st}}{t}\,dt+\int_0^\infty \frac{1-\cos(bt)}{t}\,e^{-st}\,dt\tag2
\end{align}$$
The first integral on the right-hand side of $(2)$ is a Frullani integral and its value is
$$\int_0^\infty \frac{e^{-(s-a)t}-e^{-st}}{t}\,dt=\log\left(\frac{s}{s-a}\right)\tag3$$
for $s>a$.
The second integral can be written
$$\int_0^\infty \frac{1-\cos(bt)}{t}\,e^{-st}\,dt=\int_0^\infty \frac{1-\cos(t)}{t}e^{-(s/|b|)t}\,dt\tag4$$
In THIS ANSWER, I used only integration by parts and the identity (also proved at the end of THIS ANSWER) $\int_0^\infty \log(t)e^{-st}\,dt=\frac{-\gamma-\log(s)}{s}$, where $\gamma $ is the Euler-Mascheroni constant, to show that
$$\int_0^\infty \frac{1-\cos(t)}{t}e^{-st}\,dt=\frac12\log\left(\frac{s^2+1}{s^2}\right)\tag5$$
Using $(4)$ and $(5)$ reveals that
$$\int_0^\infty \frac{1-\cos(bt)}{t}\,e^{-st}\,dt=\frac12\log\left(\frac{s^2+b^2}{s^2}\right)\tag6$$
Using $(3)$ and $(6)$ in $(2)$ yields to coveted result
$$\int_0^\infty \frac{e^{at}-\cos(bt)}{t}\,e^{-st}\,dt=\frac12\log\left(\frac{s^2+b^2}{(s-a)^2}\right)$$
ALTERNITIVE DEVELOPMENT:
Here, we evaluate $(6)$ using the Generalized Frullani Integral (GFI) that I developed HERE.
We proceed by writing
$$\begin{align}
\int_0^\infty \frac{1-\cos(bt)}{t}\,e^{-st}\,dt&=\int_0^\infty \frac{e^{-st}-\frac12\left(e^{-(s-ib)t}+e^{-(s+ib)t}\right)}{t}\,dt\\\\
&=\frac12 \int_0^\infty \frac{e^{-st}-e^{-(s-ibt)}}{t}\,dt+\frac12 \int_0^\infty \frac{e^{-st}-e^{-(s+ib)t}}{t}\,dt\\\\
&\overbrace{=}^{\text{GFI}}2\text{Re}\left(\frac12\log\left(\left|\frac{s-ib}{s}\right|\right)+i\arctan(b/s)\right)\\\\
&=\log\left(\sqrt{\frac{s^2+b^2}{s^2}}\right)\\\\
&=\frac12\log\left(\frac{s^2+b^2}{s^2}\right)
\end{align}$$
which recovers $(6)$.