How to solve the follow optimization problem?
$$\begin{array}{ll} \text{minimize} &\displaystyle\sum_{i=1}^{T} \| \mathbf{A}_i\mathbf{x} - \mathbf{b}_i \|^2\\ \text{subject to} & \mathbb{1}^\top {\mathbf{x}} = 1\\ & \mathbf{x} \geq 0\end{array}$$
where $\mathbf{x} \in \mathbb R^{n}$ is a vector and $\mathbf{b}_i \in \mathbb R^{m}$ are a sequence of vectors and $\mathbf{A}_i \in \mathbb R^{m \times n}$ is a sequence of matrices. $T$ is the number of equation. The constraints mean that all element of vector $\mathbf{x}$ are non-negative and that the sum of its elements is equal to $1$.
A simple reduction is solve in How to optimize $\|Ax - b\|^2$ subject t0 $x1 = 1$, $x\geq 0$
This time, my goal is to jointly optimize those $T$ equation.
My second question is the following. How to show constraint $\mathbf{x} $ is in compact convex set?