2

Let $X, Y$ be Banach spaces s.t. $X^{*}\simeq Y^{*}$. Is it true that $X\simeq Y$? This is clearly true for finite dimensional spaces, but I can't certain that this holds for infinite dimensional case since $X^{**}$ is not isomorphic to $X$ in general.

Seewoo Lee
  • 15,137
  • 2
  • 19
  • 49
  • 1
    This may be of interest: https://mathoverflow.net/questions/77383/a-separable-banach-space-and-a-non-separable-banach-space-having-the-same-dual-s – Math Helper May 10 '18 at 03:39

1 Answers1

3

The answer is no.

Consider the Banach spaces $c_0$ and $c$.

We have $\ell^1 \cong (c_0)^*$ via the map

$$(a_n)_{n=1}^\infty \in \ell^1\mapsto f \in (c_0)^* \quad\text{ given by }\quad f((x_n)_{n=1}^\infty) = \sum_{n=1}^\infty a_nx_n, \forall(x_n)_{n=1}^\infty \in c_0 $$

Also, we have $\ell^1 \cong c^*$ via the map

$$(a_n)_{n=0}^\infty \in \ell^1\mapsto f \in c^* \quad\text{ given by }\quad f((x_n)_{n=1}^\infty) = a_0 \cdot \left(\lim_{n\to\infty} x_n\right) + \sum_{n=1}^\infty a_nx_n, \forall(x_n)_{n=1}^\infty \in c $$

However $c_0 \not\cong c$, which is shown here.

mechanodroid
  • 46,490