5

Evaluate $$\lim_{n\to\infty} \frac {1}{n^k}\binom{n}{k} \,, \quad k\in\mathbb{Z}_+^*$$

What I tried so far:

I rewrote:

$$\lim_{n\to\infty} \frac {1}{n^k}\binom{n}{k}=\frac 1{k!}\lim_{n\to\infty}\frac {n(n-1)\cdots(n-k+1)}{n^k}=L$$

Applying $\ln$ to both sides we get:

$$\lim_{n\to\infty}\ln\left(\frac 1{k!}\right)+\sum_{i=1}^{k-1}\ln\left(\frac{ n-i}{ n^k}\right)$$

And thought maybe I could get a Riemann somewhere but it doesn't get me anywhere...

EDIT:

Solved it with Surb's hint the product of the limit is the limits of the product:

we get:

$$\frac 1{k!}\lim_{n\to\infty}\frac {n(n-1)\cdots(n-k+1)}{n^k}=\frac {1}{k!}\lim_{n\to\infty}\frac {n}{n}\lim_{n\to\infty}\frac{n-1}{n}\cdots\lim_{n\to\infty}\frac{n-k+1}{n}=\frac 1{k!}$$

StubbornAtom
  • 17,052
C. Cristi
  • 3,283

2 Answers2

2

Hint

The product doesn't depend on $n$. The limit of the product is therefore the product of the limit.

Surb
  • 55,662
1

By ratio test

$$\frac {\begin{pmatrix}n+1\\k\end{pmatrix}}{(n+1)^k}\frac {n^k} {\begin{pmatrix}n\\k\end{pmatrix}}=\left(\frac{n}{n+1}\right)^k\frac{(n+1)!}{k!(n+1-k)!}\frac{k!(n-k)!}{n!}=\left(\frac{n}{n+1}\right)^k\frac{n+1}{n+1-k}\to 1$$

thus it is inconclusive.

Note that by binomial coefficient approximation

$${n \choose k} \sim \frac{n^k}{k!}$$

then

$$ \frac {\begin{pmatrix}n\\k\end{pmatrix}}{n^k}\sim \frac1 {k!} $$

user
  • 154,566