Evaluate $$\lim_{n\to\infty} \frac {1}{n^k}\binom{n}{k} \,, \quad k\in\mathbb{Z}_+^*$$
What I tried so far:
I rewrote:
$$\lim_{n\to\infty} \frac {1}{n^k}\binom{n}{k}=\frac 1{k!}\lim_{n\to\infty}\frac {n(n-1)\cdots(n-k+1)}{n^k}=L$$
Applying $\ln$ to both sides we get:
$$\lim_{n\to\infty}\ln\left(\frac 1{k!}\right)+\sum_{i=1}^{k-1}\ln\left(\frac{ n-i}{ n^k}\right)$$
And thought maybe I could get a Riemann somewhere but it doesn't get me anywhere...
EDIT:
Solved it with Surb's hint the product of the limit is the limits of the product:
we get:
$$\frac 1{k!}\lim_{n\to\infty}\frac {n(n-1)\cdots(n-k+1)}{n^k}=\frac {1}{k!}\lim_{n\to\infty}\frac {n}{n}\lim_{n\to\infty}\frac{n-1}{n}\cdots\lim_{n\to\infty}\frac{n-k+1}{n}=\frac 1{k!}$$