How do you derive $\mathbb{E}\left[\left(\int_0^{t+\tau} e^{-\frac{t+\tau-s}{T_{\tilde{\chi}}}} \mathrm{d} \mathcal{W}_s\right) \left( \int_0^t e^{-\frac{t-s}{T_{\tilde{\chi}}}} \mathrm{d} \mathcal{W}_s\right)\right]$ ?
By decomposing from 0 to t and from t to t+$\tau$ and using Itô isometry, one has
$\mathbb{E}\left[\left(\int_0^{t+\tau} e^{-\frac{t+\tau-s}{T_{\tilde{\chi}}}} \mathrm{d} \mathcal{W}_s\right) \left( \int_0^t e^{-\frac{t-s}{T_{\tilde{\chi}}}} \mathrm{d} \mathcal{W}_s\right)\right] = \int_0^{t} e^{-\frac{2t+\tau-2s}{T_{\tilde{\chi}}}} \mathrm{d}s + \mathbb{E}\left[\left(\int_t^{t+\tau} e^{-\frac{t+\tau-s}{T_{\tilde{\chi}}}} \mathrm{d} \mathcal{W}_s\right) \left( \int_0^t e^{-\frac{t-s}{T_{\tilde{\chi}}}} \mathrm{d} \mathcal{W}_s\right)\right]$
but I can't see what to do with the second term...
Thanks for the help !