0

Let $G,H,K$ be three groups. If $G\times H$ is isomorphic to $G\times K$, then is it true for $H\cong K$?

wangkun
  • 19
  • 3

2 Answers2

2

No, take

$$G=\mathbb{Z}\times\mathbb{Z}\times\cdots$$ $$H=\mathbb{Z}$$ $$K=1$$

Note that the thesis holds if $G$ is finite (Hirshon's theorem). See here.

Dietrich Burde
  • 130,978
freakish
  • 42,851
-1

Let $A=\prod\limits_{n=1}^{\infty}G_n$, where $G_n=\mathbb{Z}$ for all $n$. And then we have $\mathbb{Z}\times A\cong\mathbb{Z}\times\mathbb{Z}\times A$. But $\mathbb{Z}\ncong\mathbb{Z}\times\mathbb{Z}$.

liwolf
  • 335