Finding $\displaystyle \int^{\pi}_{0}x^2\ln(\sin x)dx$
Solution I try
Assume $\displaystyle I =\int^{\pi}_{0}x^2\ln(\sin x)dx=\int^{\pi}_{0}x^2\ln(2\sin x/2 \cos x/2)dx$
$\displaystyle I=\int^{\pi}_{0}x^2\ln(\sin \frac{x}{2})dx+\int^{\pi}_{0}x^2\ln(\cos \frac{x}{2})dx+\int^{\pi}_{0}x^2\ln(2)dx$
$\displaystyle I=8\int^{\frac{\pi}{2}}_{0}t^2\ln\sin(t)dt+8\int^{\frac{\pi}{2}}_{0}t^2\ln\cos(t)dt+2\int^{\frac{\pi}{2}}_{0}\ln(2)dt$
I do not understand how can I solve it.