Let $X$ be a random variable and $M$ a constant such that $P[\lvert X\rvert\leq M]=1$. Show that $\lvert E(X) \rvert\leq E(\lvert X \rvert)\leq M$
For the first part, let $g(X)=\lvert X \rvert$ then $g$ is a convex function and then, by jensen inequality \begin{equation} g(E(X))\leq E(g(x)) \Rightarrow \lvert E(X) \rvert\leq E(\lvert X \rvert) \end{equation} How do I prove the second inequality? thanks a lot for your help