Let $F$ be a field and $V$ a finite dimensional vector space over $F$. Let $T:V\to V$ be a linear transformation such that for every $v\in V$ there exists $n\in\Bbb{N}$ with $T^nv=v$.
- Show that it $F=\Bbb{C}$, then $T$ is diagonalizable.
- Show that if $\mathrm{char}(F)>0$, then there exists a non diagonalizable $T$ satisfying the above hypothesis.
Let $\{\alpha_1,\cdots,\alpha_k\}$ be a basis for $V$ over $F$. Let $n_i\in \Bbb{N}$ be an integer such that $T^{n_i}\alpha_i=\alpha_i$. Let $N=\max\{n_i:1\le i\le k\}$. Then $T^Nv=v$ for all $v\in V$. I could do this much. What next?