Determine the splitting field of $x^4 - 7$ over
(a) $\mathbb{Q}$
(b) $\mathbb{F}_{5}$
(c) $\mathbb{F}_{11}$
For (a): $x^4 - 7 = (x-\sqrt[4]{7})(x+\sqrt[4]{7})(x-i\sqrt[4]{7})(x+i\sqrt[4]{7})$. The splitting field of $x^4 - 7$ is $\mathbb{Q}(\sqrt[4]{7},i)$.
For (b) and (c): I want to determine the splitting field over $\mathbb{F}_{p}$ (for $p \neq 7$, of course). How can I determine this? Is possible?