This is my homework exercise and I am stuck in following:
Exercise Let $\mathcal{A}_0$ be a countable family of subsets of a set $\Omega$. Show that the smallest set algebra $\mathcal{A}_{*}$ containing $\mathcal{A}_{o}$ is countable as well.
My idea is to show that the following set $\mathcal{A}_{*}$ is an algebra:
$$\mathcal{A}_{*}=\left ( \bigcup_{i=1}^{n} \bigcap_{j=1}^{m} A_{ij} : m, n \in \mathbb{N}, A_{ij} \in \mathcal{A}_{o} \cup \left \{ \emptyset, \Omega \right \} \cup \left \{A_{0}^{c} : A_{0} \in \mathcal{A}_{0} \right \}\right )$$
What I have done:
1) $\Omega \in \mathcal{A}_{*}$ for $m=n=1$ this is obvious.
2) $A=\bigcup_{i=1}^{n_1} \bigcap_{j=1}^{m_1} A_{ij}, \ A_{ij} \in \mathcal{\tilde{A}}_{o}:= \mathcal{A}_{o} \cup \left \{ \emptyset, \Omega \right \} \cup \left \{A_{0}^{c} : A_{0} \in \mathcal{A}_{0} \right \}$
$B=\bigcup_{i=1}^{n_2} \bigcap_{j=1}^{m_2} B_{ij}, \ B_{ij} \in \mathcal{\tilde{A}}_{o} \ \text{same as above} $
Now my problem is to express $A \cup B = \bigcup_{j=1}^{?} \bigcap_{i=1}^{?} C_{ij}$ what are the intervals of union and intersection to conclude that $A \cup B \in \mathcal{A}_{*}$.
3) The other problem is to show that $\mathcal{A}_{*}$ is closed under complements.
For this what I have done is: Suppose $A \in \mathcal{A}_{*}$, to show that $A^{c} \in \mathcal{A}_{*}$
$$A=\bigcup_{i=1}^{n_1} \bigcap_{j=1}^{m_1} A_{ij}, \ A_{ij} \in \mathcal{\tilde{A}}_{o}$$ where $A_{ij} \in \mathcal{\tilde{A}}_{o}$.
$$A^{c}=\left ( \bigcup_{i=1}^{n_1} \bigcap_{j=1}^{m_1} A_{ij}, \ A_{ij} \in \mathcal{\tilde{A}}_{o} \right )^{c}=\bigcap_{i=1}^{n_1} \bigcup_{j=1}^{m_1}A_{ij}^{c} \in \mathcal{A}_{*} ?? $$
EDIT It was a mistake for $A \cup B$ in the second step.