Consider a sequence of real-valued random variables $\{X_n\}_{\forall n \in \mathbb{N}}$ and a real-valued random variable $X$
All r.v. are defined on the probability space $ (\Omega, \mathcal{F}, P)$
Could explain what is the relation (equivalent, one implies the other, etc) between
$$ (1) \hspace{1cm}X_n \rightarrow_{a.s.} X \text{ as $n\rightarrow \infty$} $$
and $$ (2) \hspace{1cm}X_n =X \text{ with probability approaching 1 as $n\rightarrow \infty$} $$
Some considerations:
Using the definitions,
(1) $P(\omega \in \Omega \text{ s.t. } \lim_{n\rightarrow \infty}X_n(\omega)=X(\omega))=1$
(2) $\lim_{n\rightarrow \infty} P(\omega \in \Omega \text{ s.t. } X_n(\omega)=X(\omega))=1$
So (1) has the limit inside, (2) has the limit outside.
(2) may look very similar to $X_n\rightarrow_pX$, where $X_n\rightarrow_pX$ means that $\forall \epsilon>0$ $\lim_{n\rightarrow \infty} P(\omega \in \Omega \text{ s.t. } X_n-X\leq \epsilon)=1$
What can we deduce from here?