$16^x+81^x+625^x=60^x+90^x+150^x$ How many solutions does this equation has?
I solved this but I am looking for another approach. I used the arithmetic-mean, geometric-mean property.
This is how I did it:
We have: $$2^{4x}+3^{4x}+5^{4x}=2^{2x}3^x5^x+2^x3^{2x}5^x+2^x3^x5^{2x}$$
Applying arthimetic-mean geometric-mean on $2^x,3^x,5^x$
We have:
$$2^{4x}+2^{4x}+3^{4x}+5^{4x} \geq 4\times2^{2x}3^x5^x$$ $$2^{4x}+2\times3^{4x}+5^{4x} \geq 4\times2^x3^{2x}5^x$$ $$2^{4x}+3^{4x}+2\times5^{2x}\geq4\times2^x3^x5^{2x}$$
By adding these we get
$$2^{4x}+3^{4x}+5^{4x} \geq 2^{2x}3^x5^x+2^x3^{2x}5^x+2^x3^x5^{2x}$$
But at first we have equality so therefore there is only 1 solution so, from AM-GM we have:
$$2^{4x}=3^{4x}=5^{4x}$$
so $4x=0 \to x=0.$ So unique solution.