For ease of typing, I'll use the following notations
$$\eqalign{
X:Y &= {\rm tr}(X^TY)\cr
f &= \|A\| \cr
A^H &= (A^T)^*\cr
}$$
Treating $(A,A^*)$ independently, yields the Wirtinger derivatives as
$$\eqalign{
f^2 &= {\rm tr}(A^HA) = A^*:A \cr
2f\,df &= A^*:dA \cr
\frac{\partial f}{\partial A} &= \frac{A^*}{2f} \,\,\implies
\frac{\partial f}{\partial A^*} = \frac{A}{2f} \cr
}$$
If $A\in{\mathbb R}^{m\times n}$, then the standard derivative process yields
$$\eqalign{
f^2 &= {\rm tr}(A^TA) = A:A \cr
2f\,df &= 2A:dA \cr
\frac{\partial f}{\partial A} &= \frac{A}{f} \cr
}$$
which appears to be what your professor had in mind.
Update
Some more detail on the Wirtinger derivatives.
The full differential contains terms for both $A^*$ and $A$
$$\eqalign{
2f\,df &= A^*:dA + A:dA^* \cr
}$$
When $A^*$ is held constant, $dA^*=0$, leaving
$$\eqalign{
2f\,df &= A^*:dA \cr
df &= \frac{A^*}{2f}:dA \cr
\frac{\partial f}{\partial A} &= \frac{A^*}{2f} \cr
}$$
Conversely, if $A$ is held constant, then $dA=0$ and
$$\eqalign{
2f\,df &= A:dA^* \cr
df &= \frac{A}{2f}:dA^* \cr
\frac{\partial f}{\partial A^*} &= \frac{A}{2f} \cr
}$$
Finally, if $A$ is real then $A=A^*,\,$ $dA=dA^*,\,$ and
$$\eqalign{
2f\,df &= 2A:dA \cr
df &= A:dA \cr
\frac{\partial f}{\partial A} &= \frac{A}{f} \cr
}$$