Assuming you are including $30\,000$ and excluding $100\,000$.
Write:
$$\sum_{k=3}^{9}x^k=\frac{x^3-x^{10}}{1-x}\, ,$$
$$\sum_{k=0}^{9}x^k=\frac{1-x^{10}}{1-x}\, .$$
Then
$$g(x)=\left(\sum_{k=3}^{9}x^k\right)\left(\sum_{k=0}^{9}x^k\right)^4=\frac{x^3-x^{10}}{1-x}\left(\frac{1-x^{10}}{1-x}\right)^4$$
Use the operator $(1-x)^{-1}=1+x+x^2+x^3+\cdots$. Then the coefficient of $x^{15}$ in
$$\frac{1}{1-x}g(x)$$
is the required answer.
Now
$$(x^3-x^{10})(1-x^{10})^4=\sum_{r=0}^{4}(-1)^{r}\binom{4}{r}x^{10r+3}-\sum_{r=0}^{4}(-1)^{r}\binom{4}{r}x^{10r+10}\, ,$$
and therefore, since $(1-x)^{-6}=\sum_{k\ge 0}\binom{5+k}{5}x^k$, we have
$$\begin{align}(1-x)^{-1}g(x)=&\left(\sum_{r=0}^{4}(-1)^r\binom{4}{r}x^{10r+3}\right)\left(\sum_{k\ge 0}\binom{5+k}{5}x^k\right)\\[1ex] &- \left(\sum_{r=0}^{4}(-1)^r\binom{4}{r}x^{10r+10}\right)\left(\sum_{k\ge 0}\binom{5+k}{5}x^k\right)\, ,\\[1ex]
=& \sum_{k\ge 0}\left(\sum_{r\ge 0}(-1)^r\binom{4}{r}\binom{k+2-10r}{5}\right)x^{k}\\[1ex] &-\sum_{k\ge 0}\left(\sum_{r\ge 0}(-1)^r\binom{4}{r}\binom{k-10r-5}{5}\right)x^{k}\, .\end{align}$$
Taking the $x^{15}$ coefficient gives
$$\begin{align}[x^{15}](1-x)^{-1}g(x)&=\sum_{r\ge 0}(-1)^r\binom{4}{r}\binom{17-10r}{5}-\sum_{r\ge 0}(-1)^r\binom{4}{r}\binom{10-10r}{5}\, ,\\[1ex]
&=\binom{4}{0}\binom{17}{5}-\binom{4}{1}\binom{7}{5}-\binom{4}{0}\binom{10}{5}\, ,\\[1ex]
&=\binom{17}{5}-4\binom{7}{5}-\binom{10}{5}\, ,\\[1ex]
&=5852\, .\tag{Answer}\end{align}$$