Prove that if $f$ is integrable on $[a ,b]$ then $|f(x)|$ is also integrable on $[a ,b]$ and $|∫_a^b f(x)\,\mathrm dx|$ ≤ $∫_a^b |f(x)|\,\mathrm dx$
Asked
Active
Viewed 277 times
1 Answers
0
Hints:
- $\displaystyle\left|\int_a^bf(x)\,\mathrm dx\right|\leqslant\int_a^b\bigl|f(x)\bigr|\,\mathrm dx\iff-\int_a^b\bigl|f(x)\bigr|\,\mathrm dx\leqslant\int_a^bf(x)\,\mathrm dx\leqslant\int_a^b\bigl|f(x)\bigr|\,\mathrm dx$
- $(\forall x\in[a,b]):-\bigl|f(x)\bigr|\leqslant f(x)\leqslant\bigl|f(x)\bigr|$

José Carlos Santos
- 427,504