I have solved the problem in just 2 lines using a theorem which asserts that
"Let ${u_n}$ be a real sequence such that $u_n > 0 \forall n \in \mathbb{N}$ and $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \ell$ (finite of infinite). Then $\lim_{n \to \infty} (u_n)^{1 \over n} =\ell$ "
To prove the aforesaid limit, I fix $u_n={n^n \over n!}$. Then $u_n>0 \forall n \in \mathbb{N}$ and $\lim_{n \to \infty}\frac{u_{n+1}}{u_n}= \lim_{n \to \infty}(1+{1 \over n})^n=e$.
Then it follows from the above theorem that $\lim_{n \to \infty} (u_n)^{1 \over n} =e$ i.e. $ \lim_{n \to \infty} \frac{n}{(n!)^\frac{1}{n}} = e $. (Proved)
But I am trying to prove it without using the theorem. I am trying to get a generic proof.
Can anyone provide a proper wayout for this?
Thanks for your help in advance.