Computing $\lim_{x\to{0+}}\frac{\tan(x)-x}{x^3}$ without L'Hopital
Say $\lim_{x\to{0+}}\frac{\tan(x)-x}{x^3} = L$
For $L$: $$L=\lim_{x\to0}\frac{\tan x-x}{x^3}\\ L=\lim_{x\to0}\frac{\tan 2x-2x}{8x^3}\\ 4L=\lim_{x\to0}\frac{\frac12\tan2x-x}{x^3}\\ 3L=\lim_{x\to0}\frac{\frac12\tan{2x}-\tan x}{x^3}\\ =\lim_{x\to0}\frac{\tan x}x\frac{\frac1{1-\tan^2x}-1}{x^2}\\ =\lim_{x\to0}\frac{(\tan x)^3}{x^3}=1\\ \large L=\frac13$$
I found that in another Q, can someone tell me why
$$L=\lim_{x\to0}\frac{\tan x-x}{x^3}=\lim_{x\to0}\frac{\tan 2x-2x}{8x^3}$$