0

$$\sum_{n=1}^{\infty} \frac{n}{4^{n+1}}$$

Can someone help me find the sum of the series? I keep getting the sum to be $ {\frac{1}{12}}$ but the answer is $ {\frac{1}{9}}$.

Very detailed explanation will be greatly appreciated.

D. J.
  • 107

2 Answers2

0

Remember that

$$ \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n $$

Take the derivative w.r.t $x$

$$ \frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty}n x^{n-1} $$

Now use $x = 1/4$

$$ \frac{1}{(1 - 1/4)^2} = \sum_{n=1}^{+\infty}\frac{n}{4^{n-1}} = \sum_{n=0}^{+\infty}\frac{n}{4^{n-1}} $$

Can you take it from here?

caverac
  • 19,345
0

Recall that $$\sum_{n=0}^\infty x^n=\frac{1}{1-x}$$ for $|x|<1$. So for us, the series is: $$\frac{1}{16}\sum_{n=1}^\infty \frac{n}{4^{n-1}}=\frac{1}{16}\frac{d}{dx}\left.\left(\sum_{n=0}^\infty x^n\right)\right\vert_{x=1/4}=\frac{1}{16}\left(\frac{1}{(1-1/4)^2}\right)$$

Dave
  • 13,568