$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\sum_{n = 0}^{\infty}{\pars{-1}^{n} \over \pars{2n + 1}^{3}} & =
-\ic\sum_{n = 0}^{\infty}{\ic^{2n + 1} \over \pars{2n + 1}^{3}} =
-\ic\sum_{n = 1}^{\infty}{\ic^{n} \over n^{3}}\,{1 - \pars{-1}^{n} \over 2} =
\Im\sum_{n = 1}^{\infty}{\ic^{n} \over n^{3}}
\\[5mm] & =
\Im\,\mrm{Li}_{3}\pars{\expo{\ic\pi/2}} =
\Im\,\mrm{Li}_{3}\pars{\exp\pars{2\pi\ic\,{1 \over 4}}} =
{1 \over 2\ic}\
\overbrace{\bracks{-\,{\pars{2\pi\ic}^{3} \over 3!}
\,\mrm{B}_{3}\pars{1 \over 4}}}
^{\ds{Jonqui\grave{e}re\ Inversion\ Formula}}
\\[5mm] & =
{2 \over 3}\,\pi^{3}\,\mrm{B}_{3}\pars{1 \over 4} =
{2 \over 3}\,\pi^{3}\bracks{\pars{1 \over 4}^{3} -
{3 \over 2}\,\pars{1 \over 4}^{2} + {1 \over 2}\,\pars{1 \over 4}}
\\[5mm] & = \bbx{\pi^{3} \over 32} \approx 0.9689
\end{align}
$\ds{\mrm{Li}_{s}}$ is the
Polylogarithm Function. $\ds{\,\mrm{B}_{s}}$ is a Bernoulli Polynomial. See
Jonqui$\mrm{\grave{e}}$re Inversion Formula.
$$
\mbox{Note that}\quad
\mrm{B}_{3}\pars{x} = x^{3} - {3 \over 2}\,x^{2} + {1 \over 2}\,x
\phantom{\mbox{Note that}\quad}
$$