Question. Show $$\Big(\frac{-3}{p}\Big)=\begin{cases}+1 & p\equiv 1\bmod 3,\\ -1 & p\equiv 2\bmod 3. \end{cases}$$
Attempt. So, using the established results of $$\Big(\frac{3}{p} \Big) = \begin{cases}+1 & p\equiv\pm1\bmod 12,\\ -1 & p\equiv\pm5\bmod 12,\end{cases}$$ $$\Big(\frac{-1}{p}\Big)=\begin{cases}+1 & p\equiv1\bmod 4,\\ -1 & p\equiv3\bmod 4,\end{cases}$$ and observing that $$\Big(\frac{-1}{p} \Big) = \begin{cases}+1 & p\equiv1,5\bmod 12,\\ -1 & p\equiv7,11\bmod 12,\end{cases}$$ we get $$\Big(\frac{-3}{p}\Big)=\begin{cases}+1 & p\equiv 1,7\bmod 12,\\ -1 & p\equiv 5,11\bmod 12. \end{cases}$$ Providing I've carried this out right; how can I reduce this further so it is in the form of modulo $3$?