I have the set below of three nonlinear equations: \begin{align} Y_1=&\;\frac{X_1+GX_2X_3}{1+X_2X_3} \tag1\\ Y_2=&\;\frac{X_1+GX_2X_3+GX_2(1-X_3)^2}{1+X_2X_3+X_2(1-X_3)^2} \tag2\\ Y_3=&\;\frac{X_1+GX_2X_3+FGX_2(1-X_3)^2}{1+X_2X_3+FX_2(1-X_3)^2} \tag3 \end{align} Note that all variables and constants are complex numbers.
I need to find expressions for $X_1$, $X_2$ and $X_3$ each as a function of $Y_1$, $Y_2$, $Y_3$, $F$ and $G$.
What I did so far is:
I solved $(1)$ for $X_1$ $$ X_1=Y_1+X_2(Y_1X_3-GX_3) \tag4 $$
I then substituted $(4)$ in $(3)$ and solved for $X_2$ $$ X_2=\frac{X_1-Y_3}{X_3(Y_3-G)+(1-X_3)^2(Y_3F-FG)} \tag5 $$ let $$ R=Y_1 -G \\ W=Y_3-G\\ Q=Y_3F-FG\\ H=Y_1-Y_3\\ M=W-R $$ Hence $$ X_2=\frac{H}{MX_3+Q(1-X_3)^2} \tag6 $$ then substituted $(6)$ in $(4)$ $$ X_1= Y_1+\frac{HRX_3}{MX_3+Q(1-X_3)^2}\tag7 $$ Now $(6)$ and $(7)$ are $X_2$ and $X_1$ as functions of $X_3$, $Y1$, $Y_3$, $F$ and $G$. When substituting $(6)$ and $(7)$ back in $(2)$ and solve for $X_3$, and simplify it to a conventional quadratic form $aX_3^2+bX_3+c=0$, I end up with almost zero values for $a$, $b$ and $c$. And hence cannot find $X_3$.
Thanks a lot in advance.