Let$K$ be the smallest splitting field $X^5-7$ over $\mathbb{Q}$. Then how many intermediate fields of $K$ which is Galois expansion of $\mathbb{Q}$.
I know $[K:\mathbb{Q}]=[K:\mathbb{Q}(7^{\frac{1}{5}})][\mathbb{Q}(7^{\frac{1}{5}}):\mathbb{Q}]=20$ by translation theorem. I guess Galois group $Gal(K/\mathbb{Q})$ is $\mathbb{Z}/{5\mathbb{Z}} \rtimes \mathbb{Z}/{4\mathbb{Z}}$.But I can't prove and I don't know how to find subgroup of $\mathbb{Z}/{5\mathbb{Z}} \rtimes \mathbb{Z}/{4\mathbb{Z}}$.