I shall add the proof the fact claimed by @orangeskid above :
Let $E$ be an algebraically closed field and $F$ its prime field. Then the cardinality of $E$ equals the transcendence degree $\mathrm{trdeg}(E|F)$, if the cardinality of $E$ is uncountable.
Proof: Let $\mathcal{B}$ be a transcendental basis of $E|F$. Then $\mathrm{card}(E) = \mathrm{card}(F(\mathcal{B}))$, since $F(\mathcal{B})$ is infinite and $E|F(\mathcal{B})$ is algebraic. Here we use the following lemma:
Lemma: For any algebraic extension $L|K$, if $\mathrm{card}(K)=\infty$, then $\mathrm{card}(L)=\mathrm{card}(K)$. If $\mathrm{card}(K)<\infty$, then $\mathrm{card}(L) \leq \aleph_0$.
Moreover, we claim that $\mathrm{card}(F(\mathcal{B}))=\mathrm{card}(\mathcal{B})$. In fact,
$$
\mathrm{card}(\mathcal{B}) \leq \mathrm{card}(F(\mathcal{B})) = \mathrm{card}(F[\mathcal{B}]) \leq \sum_{n \geq 0} \mathrm{card}(\{P \in F[\mathcal{B}]: \deg P = n\}) \leq \sum_{n \geq 0} \mathrm{card}(\mathcal{B}) = \mathrm{card}(\mathcal{B}),
$$
so the claim holds. Therefore, we see that $\mathrm{card}(\mathcal{B}) = \mathrm{trdeg}(E|F) = \mathrm{card}(E)$, as desired.
The lemma is proved in the same manner as the long equation above.
Sorry if there are any possible mistakes and misunderstandings.