Which of the following statements are true?
- Let $\{a_{mn}\}, m ,n \in \mathbb{N}; $be an arbitrary double sequence of real numbers. Then $$\sum^ \infty_{m=1} \sum^ \infty_{n=1} a^3_{mn} = \sum^ \infty_{n=1} \sum^ \infty_{m=1} a^3_{mn} $$
Let $\{a_{mn}\}, m ,n \in\mathbb{N}; $be an arbitrary double sequence of real numbers. Then $$\sum^ \infty_{m=1} \sum^ \infty_{n=1} a^2_{mn} = \sum^ \infty_{n=1} \sum^ \infty_{m=1} a^2_{mn} $$
Let $\{a_{mn}\}, m ,n \in \mathbb{N}; $be an arbitrary double sequence of real numbers such that $|a_{mn} |\leq \sqrt{\frac{m}{n}} $ Then $$\sum^ \infty_{m=1} \sum^ \infty_{n=1} \frac{a_{mn}}{m^2n} = \sum^ \infty_{n=1} \sum^ \infty_{m=1} \frac{a_{mn}}{m^2n} $$