$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\int_{0}^{\pi/2}{\sin\pars{x} \over 1 + \root{\sin\pars{2x}}}\,\dd x & =
{\root{2} \over 2}\int_{-\pi/4}^{\pi/4}{\sin\pars{x} + \cos\pars{x} \over 1 + \root{\cos\pars{2x}}}\,\dd x =
\root{2}\int_{0}^{\pi/4}{\cos\pars{x} \over 1 + \root{\cos\pars{2x}}}\,\dd x
\\[5mm] & =
\root{2}\int_{0}^{\pi/4}{\cos\pars{x} \over 1 + \root{1 - 2\sin^{2}\pars{x}}}\,\dd x =
\root{2}\int_{0}^{\root{2}/2}\!\!\!\!\!\!\!\!{\dd x \over 1 + \root{1 - 2x^{2}}}
\end{align}
With
$\ds{x = {\root{2} \over 4}\,{t^{2} - 1 \over t}\,\ic}$:
\begin{align}
\int_{0}^{\pi/2}{\sin\pars{x} \over 1 + \root{\sin\pars{2x}}}\,\dd x & =
\root{2}\bracks{%
{\root{2} \over 2}\,\ic\int_{1}^{-\ic}{1 + t^{2} \over t\pars{1 + t}^{2}}
\,\dd t} =
\ic\int_{1}^{-\ic}{\dd t \over t} -
2\ic\int_{1}^{-\ic}{\dd t \over \pars{1 + t}^{2}}
\\[5mm] & =
\ic\ln\pars{-\ic} - 2\ic\pars{-\,{1 \over 1 - \ic} + {1 \over 2}} =
\ic\pars{-\,{\pi \over 2}\,\ic} + 2\ic\pars{{1 + \ic \over 2} - {1 \over 2}}
\\[5mm] & =
\bbx{{\pi \over 2} - 1} \approx 0.5708
\end{align}
$\ds{\ln}$ is the $\ds{\log}$-Principal Branch.