I have the matrix of $A = \begin {pmatrix} 2 && 1 && 1 \\ 1 && 2 && 1 \\ 1 && 1 && 2 \end {pmatrix}$ and am trying to find its eigenvalue.
My work so far:
$A-\lambda = \begin {pmatrix} 2-\lambda && 1 && 1 \\ 1 && 2-\lambda && 1 \\ 1 && 1 && 2-\lambda \end {pmatrix}$
Using laplace expansion:
$(2-\lambda)((2-\lambda)^2-1) - ((2-\lambda)-1) + (1-(2-\lambda))$
Using difference of squares:
$(2-\lambda)(((2-\lambda)-1)(((2-\lambda)+1)) - ((2-\lambda)-1) + (1-(2-\lambda))$
and this is where I got stuck. I can't get it to the point where I can set each point to $0$ to get the eigenvalues. Any help would be appreciated.