I carry on your second trial: $\frac{X}Y\leq u $
Now we discriminate between two cases $Y>0$ and $Y<0$. Multiplying the equation above by $Y$.
$P(\frac{X}Y\leq u)=(X\leq uY| Y>0)+P(X\geq uY| Y<0)$
$=\int_{0}^{\infty}\int_{0}^{uy} f(x,y) \,dx \, dy +\int_{-\infty}^{0}\int_{uy}^{0} \,dx \, dy$
Then we differentiate w.r.t. u to get the pdf. This can be done by using the Leibniz rule.
$p(u)=\int_{0}^{\infty} y\cdot f(uy,y) \, dy- \int_{-\infty}^{0} y\cdot f(uy,y) \, dy$
$=2\int_{0}^{\infty} y\cdot f(uy,y) \, dy$
$=2\cdot\frac{1}{2\pi\sigma_x\sigma_y}\int_{0}^{\infty} y\cdot \exp\left( -\left(\frac{y^2}{2\sigma_x^2}+\frac{u^2y^2}{2\sigma_y^2}\right)\right) \, dy$
$=\frac{1}{\pi\sigma_x\sigma_y}\int_{0}^{\infty} y\cdot \exp\left( -y^2\left(\frac{1}{2\sigma_x^2}+\frac{u^2}{2\sigma_y^2}\right)\right) \, dy$
Let $c=\frac{1}{2\sigma_x^2}+\frac{u^2}{2\sigma_y^2}$. The integral becomes equal to
$\int_{0}^{\infty} y\cdot \exp\left( -cy^2\right) \, dy$, which is $\frac1{2c}$. Thus we have
$p(u)=\frac{1}{\pi\sigma_x\sigma_y}\cdot \frac{1}{2\cdot(\frac{1}{ 2\sigma_x^2}+\frac{u^2}{2\sigma_y^2})}=\frac{1}{\pi\sigma_x\sigma_y}\cdot \frac{1}{(\frac{1}{ \sigma_x^2}+\frac{u^2}{2\sigma_y^2})}$
$=\boxed{\large{\frac1{\pi}\frac{\frac{\sigma_x}{\sigma_y}}{u^2+\left(\frac{\sigma_y}{\sigma_y}\right)^2}}}$
This is the pdf of the cauchy distribution with $\gamma=\frac{\sigma_x}{\sigma_y}$ and $x_0=0$.