0

For what $a$ does this $\int_0^{+\infty}\frac{\sin(x)\cos(1/x)}{x^a}$ converge?

I’m preparing for a test and this exercise has me wondering: I though about breaking it up to $(0,1)$ and $(1,+\infty)$ interval but I don’t know how to do the $(0,1)$ part, the $(1,+\infty)$ should be doable by Abel-Dirichlet criteria.

Robert Z
  • 145,942
innerz09
  • 310

1 Answers1

0

Hint. Consider two improper integrals: $$\int_1^{+\infty}\sin(x)\cdot \frac{\cos(1/x)}{x^a}\,dx$$ and $$\int_0^1\frac{\sin(x)\cos(1/x)}{x^a}\,dx=\int_1^{+\infty}\cos(t)\cdot\frac{\sin(1/t)}{t^{2-a}}dt$$ where $t=1/x$. Now use Dirichlet's test for convergence of improper integrals

Robert Z
  • 145,942