Let $0<x<y$. Then denote $$r = \dfrac{y}{x}>1.$$
Denote too
$$
a = \log_{r}(x).$$
Then $x=r^a$, $y = r\cdot r^a = r^{a+1}$, and
$$
\large{x^y = (r^a)^{r^{a+1}}=r^{a r^{a+1}}}; \\
\large{y^x} = (r^{a+1})^{r^a} = r^{(a+1)r^a}.\tag{1}
$$
Since $x^y=y^x$, we have
$$
ar^{a+1} = (a+1)r^a;
$$
$$
\dfrac{a+1}{a} = \dfrac{r^{a+1}}{r^a} = r;\tag{2}
$$
so we have $1$-parametric solution; returning to $x,y$:
$$
\begin{array}{|c|}
\hline
x = r^a = \left(\frac{a+1}{a}\right)^a; \\
y = r^{a+1} = \left(\frac{a+1}{a}\right)^{a+1}; \\
\hline
\end{array}\tag{3}
$$
where $a>0$ (to satisfy condition $r>1$ from eq. $(2)$).
Then
$$
\large{x^y = \left(\frac{a+1}{a}\right)^{\frac{(a+1)^{a+1}}{a^a}} = y^x.}
$$
A few comfortable examples:
\begin{array}{ll}
a=0.1: & (x,y)=(11^{0.1}, 11^{1.1}); \\
a=0.2: & (x,y)=(6^{0.2}, 6^{1.2}); \\
a=\frac{1}{3}: & (x,y)=(\sqrt[3]{4}, 4\sqrt[3]{4}); \\
a=0.4: & (x,y)=(3.5^{0.4}, 3.5^{1.4}); \\
a=0.5: & (x,y)=(\sqrt{3}, 3\sqrt{3}); \\
a=1: & (x,y)=(2,4); \quad \mbox{(famous example; no?)} \\
a=2: & (x,y)=(1.5^2, 1.5^3)=(2.25, 3.375); \\
a=4: & (x,y)=(1.25^4, 1.25^5) =(2.44140625, 3.0517578125); \\
a=5: & (x,y)=(1.2^5, 1.2^6) = (2.48832, 2.985984); \\
a=10: & (x,y) = (1.1^{10}, 1.1^{11}); \\
\ldots
\end{array}
As for me, these few examples are rather nice:
$$2^4 = 4^2;$$
$$
\large{\left(\sqrt{3}\right)^{\sqrt{27}} = \left(\sqrt{27}\right)^\sqrt{3};}
$$
$$
\large{\left(\sqrt[3]{4}\right)^{\sqrt[3]{256}} = \left(\sqrt[3]{256}\right)^\sqrt[3]{4};}
$$
$$2.25^{3.375} = 3.375^{2.25};$$
$$2.48832^{2.985984} = 2.985984^{2.48832}.$$