Loosely related to my last question, I was trying to find a closed form of the finite sum
$$a_n:=\sum_{k=0}^n\binom{2k}{k}\left(-\frac{1}4\right)^k$$
This is not too different from the well-known expression
$$\sum_{k=0}^n\binom{2k}{k}\left(\frac{1}4\right)^k=\binom{n+\frac12}{n}=\frac{2n+1}{2^{2n}}\begin{pmatrix}2n\\n\end{pmatrix}$$
so
$$ \sum_{k=0}^n\binom{2k}{k}\Big(\frac{-1}4\Big)^k=\sum_{k=0}^n\binom{2k}{k}\Big(\frac{1}4\Big)^k-2\sum_{\substack{k=0\\k\text{ odd}}}^n\binom{2k}{k}\Big(\frac{-1}4\Big)^k\\ =\frac{2n+1}{2^{2n}}\binom{2n}{n}-\frac12\sum_{l=0}^{\lfloor \frac{n-1}2 \rfloor}\begin{pmatrix}4l+2\\2l+1\end{pmatrix}\frac1{16^l}. $$
However, the second sum does not seem to be easier to handle at first glance. Also trying a similar ansatz $a_n= \binom{2k}{k}p_n/2^{2n}$ led to seemingly unstructured $p_n$ given by (starting from $p=0$):
$$ 1,1,\frac73,\frac95,\frac{72}{35},\frac{9}{7},\frac{185}{77},\frac{227}{143},\frac{5777}{2145},\ldots $$
So I was wondering (a) if there already is a known closed form for the $a_n$ (I've searched quite a bit but sadly wasn't successful) and if not, then (b) what is a good way to tackle this problem - or does a "simple" (sum-free) form maybe not even exist?
Thanks in advance for any answer or comment!
Edit: I am aware of the solution
$$ a_n=(-1)^n 2^{-2n+2}\begin{pmatrix}2n+2\\n+1\end{pmatrix} {}_2F_1(1;n+\frac32;n+2;-1)+\frac1{\sqrt2} $$
Mathematica presents where ${}_2F_1$ is the hypergeometric function. But as the latter is given by an infinite sum, I was hoping for something simpler by connecting it to the known, non-alternating problem as described above - although I'd also accept if this was not possible.