Possible Duplicate:
Behaviour of Polynomials in a PID!
Prove: if $p$ is a prime, and if $n^2+n+p$ is prime for $0\leq n \leq \sqrt{p/3}$, then it is also prime for $0 \leq n \leq p-2$.
This appeared on reddit recently, but no proof was posted. With $p=41$, it is Euler's famous prime-generating polynomial.