Let $K$ be an extension of $F$. The Galois group of $K$ is defined to be the set of all $F$-automorphisms of $K$, i.e., all automorphisms of $K$ which fix $F$.
An extension $K$ over $F$ is Galois if $| \operatorname{Gal}(K/F)|=[K:F]$.
(I am aware some call the set of all $F$-automorphisms of $K$ the Galois group when $K$ is Galois over $F$.)
It is clear $\operatorname{Gal}(K/F) \subset \operatorname{Aut}(K)$.
When is $ \operatorname{Aut}(K)= \operatorname{Gal}(K/F)$?