If you want the quick method scroll all the way down.
This method requires relatively little calculations but you must know eigenvalues, eigenvectors and the diagonalization of matrices theorem.
First, prove that $A$ is diagonalizable:
Let
$$A = [\; \mathbf{a_1} \;\; \mathbf{a_2} \;]$$
Then
$$\mathbf{a_1} · \mathbf{a_2} = \text{cos}(\alpha)\text{sin}(\alpha) - \text{sin}(\alpha) \text{cos}(\alpha) = 0$$
And
$$\Vert \mathbf{a_1} \Vert = \Vert \mathbf{a_2} \Vert = \text{cos}^2(\alpha) + \text{sin}^2(\alpha) = 1$$
This is a trigonometric identity.
Both of these conditions make $A$ diagonalizable, or in other words, there exists an invertible $2 \times 2$ matrix $Q$ such that $Q^{-1} = Q^{T}$ Such that
$$QAQ^T = D$$
Where
$D$ is a diagonal matrix with eigenvalues on the diagonal.
$Q$ is given by the eigenvectors of $A$ and the order of the columns of $Q$ ($\Rightarrow$ eigenvectors of $A$) correspond to the eigenvalues on the diagonal of $D$. So using the characteristic equation of $A$, we find the eigenvalues:
$$\text{det}(A-\lambda I) = (\text{cos}(\alpha) - \lambda)^2 - (-\text{sin}^2(\alpha)) = \lambda^2 - 2\lambda \text{cos}(\alpha)+\text{cos}^2(\alpha) + \text{sin}^2(\alpha)$$
$$\Rightarrow \lambda = \frac {2\text{cos}(\alpha) \pm \sqrt{4\text{cos}^2(\alpha) - 4\text{cos}^2(\alpha) - 4\text{sin}^2(\alpha)}}{2} = \text{cos}(\alpha) \pm i\;\text{sin}(\alpha)$$
Now, for $\lambda = \text{cos}(\alpha) + i\;\text{sin}(\alpha)$:
$$A-\lambda I = \mathbf{0} \Rightarrow
\begin{bmatrix}
\text{cos}(\alpha) - (\text{cos}(\alpha) \pm i\;\text{sin}(\alpha)) & \text{sin}(\alpha) \\
-\text{sin}(\alpha) & \text{cos}(\alpha) - (\text{cos}(\alpha) \pm i\;\text{sin}(\alpha)) \\
\end{bmatrix} = \begin{bmatrix}
\mp i\;\text{sin}(\alpha) & \text{sin}(\alpha) \\
-\text{sin}(\alpha) & \mp i\;\text{sin}(\alpha) \\
\end{bmatrix} = \mathbf{0}
$$
The first case yields
$$\begin{bmatrix}
-i\;\text{sin}(\alpha) & \text{sin}(\alpha) \\
-\text{sin}(\alpha) & -i\;\text{sin}(\alpha) \\
\end{bmatrix} = \mathbf{0}$$
Through Gaussian Elimination (specifically $iR_2 - R_1$)
$$\begin{bmatrix}
-\text{sin}(\alpha) & \text{sin}(\alpha) \\
0 & 0 \\
\end{bmatrix} = \mathbf{0}$$
So the first eigenvalue of $A$ has the form $\mathbf{u} = \begin{bmatrix}
u_1 \\
u_2 \\
\end{bmatrix}$
With the property that $i\;\text{sin}(\alpha)u_1 = \text{sin} u_2 \Rightarrow iu_1 = u_2 \Rightarrow \mathbf{u} = \begin{bmatrix}
i \\
1 \\
\end{bmatrix}$
The second case yields
$$\begin{bmatrix}
i\;\text{sin}(\alpha) & \text{sin}(\alpha) \\
-\text{sin}(\alpha) & i\;\text{sin}(\alpha) \\
\end{bmatrix} = \mathbf{0}$$
Through Gaussian Elimination (specifically $iR_2 + R_1$)
$$\Rightarrow \begin{bmatrix}
i\;\text{sin}(\alpha) & \text{sin}(\alpha) \\
0 & 0 \\
\end{bmatrix} = \mathbf{0}
$$
So the first eigenvalue of $A$ has the form $\mathbf{u} = \begin{bmatrix}
u_1 \\
u_2 \\
\end{bmatrix}$
With the property that $-i\;\text{sin}(\alpha)u_1 = \text{sin} u_2 \Rightarrow iu_1 = u_2 \Rightarrow \mathbf{u} = \begin{bmatrix}
-i \\
1 \\
\end{bmatrix}$
By the diagonalization theorem, we now know that:
$$
A = QDQ^T = \begin{bmatrix}
i & -i \\
1 & 1 \\
\end{bmatrix}
\begin{bmatrix}
\text{cos}(\alpha) + i\;\text{sin}(\alpha) & 0 \\
0 & \text{cos}(\alpha) - i\;\text{sin}(\alpha) \\
\end{bmatrix}
\begin{bmatrix}
i & 1 \\
-i & 1 \\
\end{bmatrix}$$
Another theorem states that $A^n = QD^nQ^T$. A proper proof would require mathematical induction but here's a quick demonstration:
$$A^2 = (QDQ^T)(QDQ^T) = QD(Q^TQ)DQ^T$$
Because $Q^T = Q^{-1} \Rightarrow Q^TQ = Q^{-1}Q = I$,
$$A^2 = \cdots = QDIDQ^T = QDDQ^T = QD^2Q^T$$
It is not hard to see that this works $\forall n \in \mathbb{N}$, not only for $n = 1$ and $n = 2$.
It also holds that for a diagonal matrix $D_{n \times n} = \text{diagonal}(d_1, \cdots, d_n) \Rightarrow D^n = \text{diagonal}(d_1^n, \cdots, d_n^n)$
Therefore:
$$A^n = Q \begin{bmatrix}
(\text{cos}(\alpha) + i\;\text{sin}(\alpha))^n & 0 \\
0 & (\text{cos}(\alpha) - i\;\text{sin}(\alpha))^n \\
\end{bmatrix} Q^T$$
So:
$$A^2 = Q \begin{bmatrix}
(\text{cos}(\alpha) + i\;\text{sin}(\alpha))^2 & 0 \\
0 & (\text{cos}(\alpha) - i\;\text{sin}(\alpha))^2 \\
\end{bmatrix} Q^T = Q \begin{bmatrix}
\text{cos}^2(\alpha) + 2i\;\text{cos}(\alpha)\text{sin}(\alpha) - \text{sin}(\alpha) & 0 \\
0 & \text{cos}^2(\alpha) - 2i\;\text{cos}(\alpha)\text{sin}(\alpha) + \text{sin}(\alpha) \\
\end{bmatrix} Q^T$$
$$A^3 = Q \begin{bmatrix}
(\text{cos}(\alpha) + i\;\text{sin}(\alpha))^3 & 0 \\
0 & (\text{cos}(\alpha) - i\;\text{sin}(\alpha))^3 \\
\end{bmatrix} Q^T$$
$$A^4 = Q \begin{bmatrix}
(\text{cos}(\alpha) + i\;\text{sin}(\alpha))^4 & 0 \\
0 & (\text{cos}(\alpha) - i\;\text{sin}(\alpha))^4 \\
\end{bmatrix} Q^T$$
Simplify that and then find $B$.
Or alternatively, note that
$$B = A^4 - A^3 + A^2 - A = A^4 + A^2 - A^3 - A = A^4 + A^2 - (A^3 + A) = A^2(A^2 + I) - A(A^2 + I) = (A^2 - A)(A + I)$$
And this could have been solve much quicker with literally two matrix multiplications (one for $A^2$ and another one for $(A^2 - A)(A + I)$).
I realized you can do it like this halfway through my explanation of the other method and it's already really long so I won't erase it.