$$I_{\alpha}=\int_{0}^{\pi/2}\mathrm dx {\sin(2x)\over 1+\tan^{\alpha}x}={1\over 2}\tag1$$
$\alpha \ge 0$
The indefinite integral for $\alpha=1,2,3...$
$$I_1={1\over 4}\sin(2x)-{1\over 4}\cos(2x)-{1\over 2}\log[\sin x+\cos x]+C$$
$$I_2=-{1\over 2}\cos^4(x)+C$$
$$I_3=-{1\over 4}\sin(2x)+{1\over 4}\cos(2x)-{2\over 3}\log[2-\cos 2x]-{1\over 6}\ln[\sin x +\cos x]+C$$
The indefinite integral looks complicate for $\alpha$, how can $(1)$ gives ${1\over 2}?$