Q: Calculate
$$S=1+{3\over4}+{3\times5\over4\times8}+{3\times5\times7\over4\times8\times12}+\dots$$
I calculated that the $n$th term is given by $$ \begin{align} A_n&={3\times5\times7\times\dots\times(2n+1)\over4\times8\times12\times\dots\times4n}\\ &={{(2n+1)!\over2\times4\times8\dots\times2n}\over4^nn!}\\ &={(2n+1)!\over8^n(n!)^2} \end{align}$$ Hence $$S=\sum_{n=0}^{\infty}{(2n+1)!\over8^n(n!)^2} =\sum_{n=0}^{\infty}{\binom{2n}{n}(2n+1){1\over8^n}}$$
I'm not sure how to proceed
I feel like generating function for $\sum{\binom{2n}{n}(2n+1)}$ would be helpful but don't know how to derieve it.