I would like to show that $$\forall n\in\mathbb{N}^*, \quad \sqrt{\frac{n}{n+1}}\notin \mathbb{Q}$$
I'm interested in more ways of proofing this.
My method :
suppose that $\sqrt{\frac{n}{n+1}}\in \mathbb{Q}$ then there exist $(p,q)\in\mathbb{Z}\times \mathbb{N}^*$ such that $\sqrt{\frac{n}{n+1}}=\frac{p}{q}$ thus
$$\dfrac{n}{n+1}=\dfrac{p^2}{q^2} \implies nq^2=(n+1)p^2 \implies n(q^2-p^2)=p^2$$ since $p\neq q\implies p^2\neq q^2$ then
$$n=\dfrac{p^2}{(q^2-p^2)}$$
since $n\in \mathbb{N}^*$ then $n\in \mathbb{Q}$
- I'm stuck here and I would like to see different ways to prove $\sqrt{\frac{n}{n+1}}\notin \mathbb{Q}$