I have problem understanding second step in this proof: \begin{align} \binom n{m-1}+\binom nm&=\frac{n!}{(m-1)!(n-m+1)!}+\frac{n!}{m!(n-m)!}\\ &=\frac{n!m+n!(n-m+1)}{m!(n-m+1)!}\\ &=\frac{n!(n-m++1+m)}{m!(n-m+1)!}\\ &=\frac{n!(n+1)}{m!(n-m+1)!}\\ &=\frac{(n+1)!}{m!(n-m+1)!}=\binom{n+1}m \end{align}
Why is it not like this: \begin{align} &=\frac{n!m!(n-m)!+n!(m-1)!(n-m+1)!}{(m-1)!(n-m+1)!m!(n-m)!}\\ \end{align} But like this: \begin{align} &=\frac{n!m+n!(n-m+1)}{m!(n-m+1)!}\\ \end{align} Does it just skip some step/steps that are clear to people with more mature math skills? I am doing exercises from Serge Lang's Basic mathematics as self study. Proof in question is from here: Binomial coefficient proof for ${n\choose m-1}+{n\choose m}={n+1\choose m}$
$$\binom{n+1}{m}=\frac{(n+1)!}{m!((n+1)-m)!}$$
So you may try to guess the proof process by make the denominator $m!\ ((n+1)-m)!$ first.
– linear_combinatori_probabi Apr 11 '18 at 09:01