$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
I & \equiv \int_{0}^{\infty}\expo{-t - 1/t}{\dd t \over \root{t}}
\,\,\,\stackrel{t\ =\ \exp\pars{\theta}}{=}\,\,\,
\int_{-\infty}^{\infty}\expo{-2\cosh\pars{\theta}}\expo{\theta/2}\dd\theta =
2\int_{0}^{\infty}\expo{-2\cosh\pars{\theta}}\cosh\pars{\theta \over 2}
\,\dd\theta
\\[5mm] & =
2\int_{0}^{\infty}\expo{-4\sinh^{2}\pars{\theta/2} - 2}
\cosh\pars{\theta \over 2}\,\dd\theta =
4\expo{-2}\ \underbrace{\int_{\theta\ =\ 0}^{\theta\ \to\ \infty}\expo{-4\sinh^{2}\pars{\theta/2}}\,\dd\sinh\pars{\theta \over 2}}
_{\ds{\root{\pi} \over 4}}
\\ & =
\bbx{\root{\pi} \over \expo{2}} \approx 0.2399
\end{align}