For example let $G=\langle a,b,c|abcbc=a^2cb^2=a^2cba^{-1}ca=1\rangle$
I know that $G^{ab} \cong \mathbb{Z}^n / \langle (_1) = · · · = (_) = 0\rangle.$ Where $$ maps $w$ to the column \begin{pmatrix} y_1\\\ y_2\\\ \vdots \\\ y_i \\\ \vdots \\\ y_k \end{pmatrix}with $y_i$ being the sum of the powers for $ x_i$ in $w$. So I get this matrix as an $Im$ of $L:ℤ^k→ ℤ^n$ mapping $ e_i→(w_i)$ \begin{pmatrix} 1 & 2 & 2 \\\ 2 & 2 & 1 \\\ 2 & 1 & 2 \end{pmatrix} I know that there are bases $_1, . . . , _ ∈ ℤ^k$ and $_1, . . . , _ ∈ ℤ^k$ so that $_ = \lambda__i$ if $i\leq n$ and $0$ otherwise
and i know that $\mathbb{Z}^n / Im = \prod^n_{i=1} \mathbb{Z}/\lambda \mathbb{Z}.$ But i'm not quite sure how to use it.