According to Maple,
$$f(f(f(f(x)))) - x = -{\frac { \left( x+101 \right) \left( 3\,{x}^{2}+303\,x+10201
\right) \left( 5\,{x}^{4}+1010\,{x}^{3}+102010\,{x}^{2}+5151505\,x+
104060401 \right) \left( {x}^{8}+404\,{x}^{7}+142814\,{x}^{6}+
28848428\,{x}^{5}+4058355639\,{x}^{4}+378363618036\,{x}^{3}+
22291923162621\,{x}^{2}+750494746474907\,x+10828567056280801 \right) x
}{ \left( 2\,x+101 \right) \left( 2\,{x}^{2}+202\,x+10201 \right)
\left( 2\,{x}^{4}+404\,{x}^{3}+61206\,{x}^{2}+4121204\,x+104060401
\right) \left( 2\,{x}^{8}+808\,{x}^{7}+285628\,{x}^{6}+57696856\,{x}
^{5}+7284228070\,{x}^{4}+588565628056\,{x}^{3}+29722564216828\,{x}^{2}
+857708281685608\,x+10828567056280801 \right) }}
$$
The factors $x$, $x+101$ and $3 x^2+303 x+10201$ of the numerator give solutions of $f(f(x))=x$, so for $x$ to be in a $5$-cycle we need $x$ to be a root of
the irreducible quartic $$5x^4+1010x^3+102010x^2+5151505x+104060401$$ or the irreducible octic $${x}^{8}+404\,{x}^{7}+142814\,{x}^{6}+28848428\,{x}^{5}+4058355639\,{x}
^{4}+378363618036\,{x}^{3}+22291923162621\,{x}^{2}+750494746474907\,x+
10828567056280801
$$
These turn out to be less fearsome if you substitute $x = - 101 (1+t)/2$, obtaining
the quartic $$ 5\,{t}^{4}+10 t^2+1=0$$
and the octic
$$ {t}^{8}+28 t^6 + 134 t^4 + 92 t^2 + 1 = 0
$$
as these are quadratic and quartic in $t^2$. The solutions end up as
(for the quartic)
$$ x = -\frac{101}{2} \pm \frac{101 i}{10} \sqrt{25 \pm 10 \sqrt{5}}$$
and (for the octic)
$$ \eqalign{x &= -\frac{101}{2} \pm \frac{101 i}{2} \sqrt{7 + 2 \sqrt{5} + 2 \sqrt{15 + 6 \sqrt{5}}}\cr
x &= -\frac{101}{2} \pm \frac{101 i}{2} \sqrt{7 - 2 \sqrt{5} + 2 \sqrt{15 - 6 \sqrt{5}}}\cr
x &= -\frac{101}{2} \pm \frac{101 i}{2} \sqrt{7 + 2 \sqrt{5} - 2 \sqrt{15 + 6 \sqrt{5}}}\cr
x &= -\frac{101}{2} \pm \frac{101 i}{2} \sqrt{7 - 2 \sqrt{5} - 2 \sqrt{15 - 6 \sqrt{5}}}\cr
} $$
I'll leave it to you to see how these split up into four-cycles.